
Large Synoptic Survey Telescope (LSST)

Data Management Middleware

Design

K.-T. Lim, G. Dubois-Felsmann, M. Johnson, M. Juric, and

D. Petravick

LDM-152

Latest Revision: 2017-07-05

This LSST document has been approved as a Content-Controlled Document by the LSST DMTech-

nical Control Team. If this document is changed or superseded, the new document will retain

the Handle designation shown above. The control is on the most recent digital document with

this Handle in the LSST digital archive and not printed versions. Additional information may be

found in the corresponding DM RFC.

LARGE SYNOPTIC SURVEY TELESCOPE

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Middleware Design LDM-152 Latest Revision 2017-07-05

Abstract

The LSST middleware is designed to isolate scientific application pipelines and pay-

loads, including the Alert Production, Data Release Production, Calibration Products

Productions, and science user pipelines executed within the LSST Science Platform,

from details of the underlying hardware and system software. It enables flexible

reuse of the same code in multiple environments ranging from offline laptops to

shared-memory multiprocessors to grid-accessed clusters, with a common I/O and

logging model. It ensures that key scientific and deployment parameters controlling

execution can be easily modified without changing code but also with full prove-

nance to understand what environment and parameters were used to produce any

dataset. It provides flexible, high-performance, low-overhead persistence and re-

trieval of datasets with data repositories and formats selected by external parame-

ters rather than hard-coding. Middleware services enable efficient, managed repli-

cation of data over both wide area networks and local area networks.

The contents of this document are subject to configuration control by the LSST DM Technical Control Team.

ii

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Middleware Design LDM-152 Latest Revision 2017-07-05

Change Record

Version Date Description Owner name

1.0 2011-07-25 Initial version based on pre-existing UML

models and presentations

Kian-Tat Lim

2.0 2013-05-22 Updated based on experience from proto-

types and Data Challenges.

Kian-Tat Lim

8 2013-10-04 Updated based on comments from Process

Control Review, changed to current terminol-

ogy

Kian-Tat Lim

9 2013-10-09 Further updates based on Process Control Re-

view, formatting cleanup.

Kian-Tat Lim

10 2013-10-10 TCT R Allsman

11.0 2017-07-05 Rewritten for Construction and Operations.

Approved in RFC-358.

K-T Lim

Document curator: Kian-Tat Lim
Document source location: https://github.com/lsst/LDM-152

The contents of this document are subject to configuration control by the LSST DM Technical Control Team.

iii

https://jira.lsstcorp.org/browse/RFC-358
https://github.com/lsst/LDM-152

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Middleware Design LDM-152 Latest Revision 2017-07-05

Contents

1 Introduction 1

2 Data Backbone 2

2.1 Replication and Transport . 4

2.2 Location and Metadata . 5

2.3 Files . 5

2.4 Databases . 5

3 Data Butler Access Client 6

3.1 Key Requirements . 6

3.2 Baseline Design . 6

3.3 Alternatives Considered . 8

3.4 Implementation . 8

4 Task Framework 8

4.1 SuperTask . 9

4.2 Activators . 10

4.3 Task . 11

4.4 Configuration . 11

4.4.1 Key Requirements . 12

4.4.2 Baseline Design . 12

4.4.3 Implementation . 13

4.5 Logging . 13

4.5.1 Key Requirements . 13

4.5.2 Baseline Design . 13

4.5.3 Implementation . 14

4.6 MultiNode API . 14

4.6.1 Key Requirements . 14

4.6.2 Baseline Design . 14

4.6.3 Prototype Implementation . 15

The contents of this document are subject to configuration control by the LSST DM Technical Control Team.

iv

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Middleware Design LDM-152 Latest Revision 2017-07-05

4.7 MultiCore API . 15

5 Workload/Workflow Management 15

5.1 Batch Computing . 16

5.2 Workflow Management . 16

5.3 Workload Management . 17

6 Processing Control 18

6.1 Prompt Processing . 18

6.2 OCS-Controlled Batch . 20

7 References 20

The contents of this document are subject to configuration control by the LSST DM Technical Control Team.

v

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Middleware Design LDM-152 Latest Revision 2017-07-05

Data Management Middleware Design

1 Introduction

This document describes the baseline design of the LSST data access and processing middle-

ware, including the following components:

• Data Backbone

• Data Butler Access Client

• Task Framework

• Workload/Workflow Management

• Processing Control

The Data Backbone manages the storage of LSST data products. The Data Butler Access

Client provides a flexible interface for retrieving and persisting those data products. The Task

Framework defines how scientific algorithms are packaged into pipelines, including how they

are configured, how they use the Data Butler to access data, and how they execute onmultiple

nodes or cores. Workload and Workflow Management interfaces with the Task Framework to

sequence the execution of dataflow graphs across one or more distributed computational

environments. Processing Control uses the Workload and Workflow Management tools to

execute campaigns (applications of pipelines with specific configurations to sets of data) in

an efficient, fault-tolerant manner while monitoring the state of execution.

Common to all aspects of the middleware design is an emphasis on flexibility through the

use of abstract, pluggable interfaces controlled by managed, user-modifiable parameters.

In addition, the substantial computational and bandwidth requirements of the LSST Data

Management System (DMS) force the designs to be conscious of performance, scalability, and

fault tolerance. Inmost cases, themiddleware does not require advances over the state of the

art; instead, it requires abstraction to allow for future technological change and aggregation

of tools to provide the necessary features.

Requirements for the DMS Middleware are defined in LDM-556.

The contents of this document are subject to configuration control by the LSST DM Technical Control Team.

1

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Middleware Design LDM-152 Latest Revision 2017-07-05

Figure 1 illustrates how various parts of the middleware interact with each other.

Task Framework

Config API Logging API MultiNodeTask
API

MultiCoreTask
API

Control and
Orchestration

Authentication
& Authorization

Provisioning &
Resource

Management
Monitoring

Da
ta

 B
ut

le
r

Science Algorithms

SuperTask

Task

Command Line
Activator SUIT Activator

Pre-Flight and
Job-Level
Activators

D
at

a
B

ac
kb

on
e

RDBMS

Qserv

Files

FIGURE 1: Data Management Middleware and Infrastructure

2 Data Backbone

The Data Backbone (DBB) provides data management (storage, tracking, and replication) for

LSST data products that reside in non-computational storage tiers. It provides policy-defined

operations for intra-site and inter-site data distribution, access latency requirements depen-

dent upon the lifecycle of the data, data protection and recovery, data retention and eviction

given cadences and predicted and observed on-demand usage, and efficient bulk recall of

data which are spatially, temporally, or otherwise related in support of processing or export.

See Figure 2.

The Data Backbone serves as an abstraction against storage components whose similar re-

quirements may otherwise have been met through duplication of effort during construction

and operations. From the perspective of data producers and consumers, the Data Backbone

provides a common, well-defined concept of how all participating storage components are

The contents of this document are subject to configuration control by the LSST DM Technical Control Team.

2

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Middleware Design LDM-152 Latest Revision 2017-07-05

Data
Backbone
Endpoint

Tape

Data Butler
Client

Science Image Archive Science Catalog Archive

Data Backbone Transport and Replication

Metadata &
ProvenanceFiles Other DBsQserv

Caches

Science
Image
Archive

Science
Catalog
Archive

Science
Image
Archive

Science
Catalog
Archive

Data
Backbone
Endpoint

Caches

Other
Backbone

Clients
Data Butler

Client
Other

Backbone
Clients

FIGURE 2: Data Backbone

The contents of this document are subject to configuration control by the LSST DM Technical Control Team.

3

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Middleware Design LDM-152 Latest Revision 2017-07-05

expected to function, which greatly simplifies understanding of the system as opposed to

understanding differing personalities of a large number of components.

The Data Backbone links all of the computational enclaves and the Data Access Centers, act-

ing as the spine that supports them all.

Rucio [14] is being considered as an overall DBB system for files.

2.1 Replication and Transport

The Data Backbone spans the Base Site, Archive Site, all Data Access Centers and all sites

participating in annual data release processing. Data products can enter the Data Backbone

at any location as permitted by policy and are subject to timely distribution, access-latency

guarantees and eviction as defined by the policy. The Data Backbone provides data protection

of data products while resident with the backbone.

Movement operations supported by the Data Backbone include:

• Staging: data is copied in and out of the Data Backbone in coordination with an external

management system; primarily used for workflow orchestration.

• Caching: data location and lifetime is managed by policy; caches are populated by use.

• Mirroring: 1:1 replication of data is dictated by policy.

• Export: data is copied out of the Data Backbone to end users;

The Data Backbone does not include public access restrictions, responsibilities regarding pro-

prietary data periods or users with data access rights, or authorization or authentication of

external users or services. This functionality is provided by layers on top of the Data Back-

bone, in the LSST Science Platform, Identity Management, and Bulk Distribution components.

Tiers within the Data Backbone include a custodial store with assurance of data preservation

and an access tier that may have lower latency.

File transport technologies such as Globus Transfer [4] with GridFTP and RESTful interfaces

are being considered.

The contents of this document are subject to configuration control by the LSST DM Technical Control Team.

4

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Middleware Design LDM-152 Latest Revision 2017-07-05

2.2 Location and Metadata

The Data Backbone tracks the locations of all replicas of data ingested into it, along with their

metadata and provenance. This information is stored in global, replicated database tables.

2.3 Files

The Data Backbone holds all files that are part of the Science Image Archive, including raw

data and processed data products, as well as additional files such as the Engineering and

Facilities Database Large File Annex, files associated with the Calibration Database, etc.

These files will be kept on a high-performance, scalable file store and archived in a reliable

long-term file store. The baseline design uses GPFS [3] and HPSS [5], but drawbacks to these

have been identified. Investigations of alternate storage technologies such as object stores

(including AmazonGlacier [1]), Campaign Storage [2], andQuobyte [12] have been performed,

but future work remains in this area.

2.4 Databases

The Data Backbone holds all databases that are part of the Science Catalog Archive that is

visible to data rights holders. These include the Query Access (Level 2) Database (composed

of Data Release catalogs and associatedmetadata as served by the Qserv software, described

separately in LDM-135), the Calibration Database, the reformatted Engineering and Facility

Database, and the (external-facing) Level 1 Database.

Just like files, these databases need to be managed in terms of replication, disaster recovery,

and lifetime. The underlyingmechanisms for data storage and transport and the interfaces to

the data are significantly different, however. Accordingly, all databases are stored in appropri-

ate database management systems that provide their own native mechanisms for replication

and backup. These include the Qserv distributed database and an "off-the-shelf" relational

database (for which MySQL/MariaDB [8], Oracle [10], and Microsoft SQL Server [15] are being

evaluated).

The contents of this document are subject to configuration control by the LSST DM Technical Control Team.

5

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Middleware Design LDM-152 Latest Revision 2017-07-05

3 Data Butler Access Client

This component is the framework by which applications retrieve datasets from and persist

datasets to file and database storage. It provides a flexible way of identifying datasets, a plug-

gable mechanism for discovering and locating them, and a separate pluggable mechanism

for reading and writing them.

3.1 Key Requirements

The framework must provide persistence and retrieval capabilities to application code. Per-

sistence is the mechanism by which application objects are written to files in some format or

a database or a combination of both; retrieval is the mechanism by which data in files or a

database or a combination of both is made available to application code in the form of an

application object. Persistence and retrieval must be low-overhead, allowing efficient use of

available bandwidth. The interface to the I/O layer must be usable by application developers.

It is required to be flexible, allowing changes in file formats or even whether a given object

is stored in a file or the database to be selected at runtime in a controlled manner. It must

be possible to store image pixel data in a file while part or all of its metadata is stored in a

different file or in a database table.

3.2 Baseline Design

The framework is designed to provide access to datasets. A dataset is a logical grouping of

data that is persisted or retrieved as a unit, typically corresponding to a single programming

object or a collection of objects. Datasets are identified by a set of key/value pairs along with a

label for the type of data (e.g. processed visit image). Datasets may be persisted into multiple

formats.

The framework is made up of two main components: a “Mapper” that manages camera-

specific repositories of datasets and determines the logical location of an identified dataset

and a “Butler” that performs persistence and retrieval for that dataset. In the baseline design,

the Butler wraps the Mapper and provides the exposed interface; it is anticipated that future

evolution will increasingly separate these two. Both components are implemented in Python.

The Butler and its included Mapper manage repositories of datasets which can be in files or

The contents of this document are subject to configuration control by the LSST DM Technical Control Team.

6

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Middleware Design LDM-152 Latest Revision 2017-07-05

in a database. Operations on datasets include get, put, list, and check for existence.

The Butler contains a pluggable set of serializers that handle persistence to and retrieval

from serialization formats such as Python pickle files, task configuration override files (Python

scripts), and FITS tables; separate plugins handle different types of storage such as filesys-

tems, object stores, or SQL databases.

The Butler is initialized with zero or more read-only input repositories and one or more read-

/write output repositories. When reading a dataset, the output repository is searched first;

the “chained” input repositories are searched if the dataset is not found. When writing a

dataset, the dataset always goes to the output repository, never to the chained inputs (un-

less the output is specified as being the same as an input). The set of input repositories is

recorded for provenance purposes and for future uses of the output repository.

TheMapper translates from a dataset type name and one or more astronomically meaningful

key/value dictionaries into a dataset location and storage. The location might be a pathname

or URL for a file; it would include an SQL query for a database.

The Mapper provides flexibility at many levels. First, it allows the provided key/value dictio-

naries to be expanded using rules or database lookups. This can be used to map from a visit

identifier to an exposure length, for example, or from a CCD name to an equivalent num-

ber. This facility is used to implement the “rendezvous” of raw data with its corresponding

calibration data. Second, it allows the key/value pairs to be turned into a location string us-

ing a dataset type-dependent method. Typically, this will be performed by substitution into

a dataset type-specific template. Third, the Mapper allows camera-specific and repository-

specific overrides and extensions to the list of rules and templates, enabling per-camera and

dynamic dataset type creation.

For LSST, the Mapper flexibility is used in several ways. For precursor data, image files can

retain the names they were assigned in the upstream archive, with templates being used to

compute the filename from the values in the dictionary. Metadata stored in a SQLite database

within the repository allows more rapid listing of available datasets and expansion of partial

key/value dictionaries. Calibration data is associated with images by observation timestamp

using validity ranges stored in an auxiliary SQLite database. For LSST Data Release Produc-

tion, the same mechanisms will be used to process data staged from the Data Backbone

(DBB). Direct access by the Data Butler to the Data Backbone (e.g. from the LSST Science Plat-

The contents of this document are subject to configuration control by the LSST DM Technical Control Team.

7

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Middleware Design LDM-152 Latest Revision 2017-07-05

form) will use DBB metadata tables directly. The Mapper will produce logical file identifiers

that the DBB converts to endpoint-local physical locations. For LSST Alert Production, the

Mapper will be configured to point to raft images on the distributor nodes and locally-cached

calibration and template images.

3.3 Alternatives Considered

Use of a full-fledged object-relational mapping system for output to a database was consid-

ered but determined to be too heavyweight and intrusive. Persistence from C++ was tried

and found to be complex and unnecessary; Python persistence suffices since all control is in

Python.

3.4 Implementation

A Python implementation of the design has been in place since DC3 prior to Final Design

Review. This implementation has evolved substantially since then to simplify the pluggability

of serialization and storage, to simplify the configuration of common Mapper subclasses,

to allow and maintain more repository configuration information within the repository, to

support multiple input and output repositories, to provide a configurable (rather than hard-

coded) mechanism for retrieving and persisting composite datasets that aremade up ofmore

than one serialized dataset, to replace a custom configuration file format with standard YAML

[16], and to provide support for caching persisted and retrieved objects in memory.

Since low-level serialization code is implemented in C++ or external libraries, I/O performance

remains good.

4 Task Framework

The Task Framework enables the packaging of scientific algorithms into executable and reusable

pipelines. It handles configuration, argument parsing, and interfacing with the I/O and inter-

process communications mechanisms.

The Task Framework is a Python class library that provides a structure of standardized class

entry points and conventions to organize low-level algorithms into potentially-reusable algo-

The contents of this document are subject to configuration control by the LSST DM Technical Control Team.

8

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Middleware Design LDM-152 Latest Revision 2017-07-05

rithmic components called Tasks. Sample Tasks might include dark frame subtraction, object

detection, or object measurement. The Framework organizes tasks into basic pipelines called

SuperTasks. Sample SuperTasks might include processing a single visit, building a coadd, or

differencing a visit. The algorithmic code is written into (Super)Tasks by overriding classes and

providing implementation for standard entry points. The Task Framework allows the pipelines

to be constructed and run at the level of a single node or a group of tightly-synchronized

nodes. It allows for sub-node parallelization: trivial parallelization of Task execution, as well

as providing parallelization primitives for development of multi-core Tasks and synchronized

multi-node Tasks.

The Task Framework serves as an interface layer between orchestration and the algorithmic

code. It exposes a standard interface to Activators (command-line runners as well as the

workflow component and automated QC systems), which use it to execute the code wrapped

in Tasks. The Task Framework does not concern itself with fault-tolerant massively parallel

execution of the pipelines over multiple (thousands) of nodes nor any staging of data that

might be required; this is the concern of the orchestration and workflow middleware.

The Task Framework exposes to the workflow system the needs and capabilities of the un-

derlying algorithmic code (i.e., the number of cores needed, expected memory-per-core, ex-

pected need for data). It may also receive from the orchestration layer information on how

to optimally run the particular task (i.e., which level of intra-node parallelization is desired).

4.1 SuperTask

A SuperTask represents a unit of (generally transformational) work to be performed on data.

Its primary responsibility is to provide the interface between Activators and Tasks. In doing so,

it separates input and output from computation, making Tasks more reusable and enabling

data movement and other optimizations within a distributed execution environment. The

SuperTask also exposes the kinds of data that it accepts and generates. For example, a coad-

dition SuperTask might operate on a set of processed visit images and produce a patch of a

coadded image. The specific data items to be processed are supplied through the Activator-

SuperTask interface. The goal of the design is that any SuperTask can be run in any computa-

tional environment, from a laptop command line to the large-scale Data Release Production.

In general a SuperTask receives the content of its inputs and produces its outputs by invoking

the Data Butler.

The contents of this document are subject to configuration control by the LSST DM Technical Control Team.

9

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Middleware Design LDM-152 Latest Revision 2017-07-05

The SuperTask base class is a subclass of Task. This is so that SuperTask can take advantage

of the configuration mechanism for Tasks. The hierarchy of Tasks in a specific application

therefore extends all the way up to the top-level SuperTask, and each level is addressable for

configuration discovery and overrides.

Each SuperTask implements a method that groups the input datasets into "quanta" that are

the minimal units of work for an instance of the SuperTask and notifies the Activator of the

outputs to be produced from each such unit of work. It also implements a method to execute

a computation on a single quantum of data, typically by retrieving the inputs from the Data

Butler and executing the underlying Task, followed by persisting the outputs, again using the

Data Butler.

Datasets, as with the Data Butler, are specified by a set of key/value pairs, typically obtained

by performing a database query on metadata tables, along with a label for the type of data

(e.g. processed visit image).

SuperTasks also expose their processing requirements to their Activators, such as a need for

multi-node communication or multi-core execution.

SuperTask implementation is in the prototype stage. The previous design and implementa-

tion combined the Activator and SuperTask functionality into a single class (CmdLineTask) that

is now being replaced.

4.2 Activators

The Activator is responsible for providing a Butler instance for the SuperTask’s use. It is also

responsible for instantiating the SuperTask to be run and for providing necessary inputs to

the configuration parameter mechanism (see section 4.4) for the SuperTask. For example, the

“command line Activator” identifies the SuperTask to be run by name, locates and instantiates

it, and provides for command-line overrides of config parameters of the SuperTask. It also

creates a Butler based on one or more provided or defaulted data repositories.

An Activator is responsible for arranging for the execution of a SuperTask’s execution method

one or more times over a set of dataset specifiers. Via collaboration with the SuperTask

interfaces, the Activator is able to determine the parallelization and scatter-gather behavior

that is permissible and/or required to implement the workflow defined by the SuperTask.

The contents of this document are subject to configuration control by the LSST DM Technical Control Team.

10

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Middleware Design LDM-152 Latest Revision 2017-07-05

The Activator therefore controls the input/output data access environment as well as the com-

putational environment of the SuperTask. It is the plugin that enables SuperTask portability

and reuse.

Specific Activators that are part of the design include a command line Activator and a work-

flow Activator that can be used to determine the data needed and produced by a SuperTask

before its execution in order to configure data staging capabilities.

Activator implementation is in the prototype stage.

4.3 Task

Tasks are simply Python scripts with a common base class. Using Python enables Tasks to

support complex control flows without developing a new control flow language. Tasks may

hierarchically call sub-Tasks as part of their execution. Errors are reported through standard

Python exception subclasses.

Tasks provide by default three facilities commonly used by all algorithmic code: configuration,

metadata, and logging. The Task base class provides configuration facilities using the config-

uration framework. The Task configuration can include selection of sub-Tasks to be executed,

allowing the pipeline to be reconfigured at runtime. The Task class allows Tasks to save meta-

data related to their processing, such as performance or data quality information, separate

from their data products. Each Task provides a default logger instance associated with the

Task’s name and position within the Task/sub-Task hierarchy.

The basic Task implementation is complete and resides in the pipe_base package.

4.4 Configuration

The configuration component of the Pipeline Framework is a mechanism to specify parame-

ters for applications and middleware in a consistent, managed way. The use of this compo-

nent facilitates runtime reconfiguration of the entire system while still ensuring consistency

and the maintenance of traceable provenance.

The contents of this document are subject to configuration control by the LSST DM Technical Control Team.

11

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Middleware Design LDM-152 Latest Revision 2017-07-05

4.4.1 Key Requirements

Configurations must be able to contain parameters of various types, including at least strings,

booleans, integers, and floating-point numbers. Ordered lists of each of these must also

be supported. Each parameter must have a name. A hierarchical organization of names

is required so that all parameters associated with a given component may be named and

accessed as a group.

There must be a facility to specify legal and required parameters and their types and to use

this information to ensure that invalid parameters are detected before code attempts to use

them. Default values for parameters must be able to be specified; it must also be possible to

override those default values, potentially multiple times (with the last override controlling).

Configurations and their parameters must be stored in a user-modifiable form. It is prefer-

able for this form to be textual so that it is human-readable and modifiable using an ordinary

text editor.

It must be possible to save sufficient information about a configuration to obtain the value of

any of its parameters as seen by the application code.

4.4.2 Baseline Design

The initial design based on a custom text file format has been refined based on experimen-

tation during the design and development phase.

Configurations are instances of a Python class. The class definition specifies the legal param-

eter names, their types, default values if any, minimum and maximum lengths for list values,

and whether a parameter is required. It also mandates that a documentation string be pro-

vided for each parameter. Use of Python for defining configurations enables inheritance, the

use of package imports to easily refer to configurations from other components, complex

parameter validation, and the ability to define powerful new parameter types. Default values

in configuration instances can be overridden by human-readable text files containing normal

Python code, simplifying the specification of multiple similar parameters. Overrides can also

be set using command line parameters. The Python base class maintains complete history

information for every parameter, including its default and all overrides. The state of a con-

figuration as used by the application code can be written out and optionally ingested into a

The contents of this document are subject to configuration control by the LSST DM Technical Control Team.

12

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Middleware Design LDM-152 Latest Revision 2017-07-05

database for provenance purposes .A mechanism is provided to automatically translate be-

tween the Python configuration instance and a control object for C++ code.

4.4.3 Implementation

An implementation of the Python-based design in the pex_config package has been used

since December 2011. It contains features such as selection of an algorithm by name from a

registry, automatically pulling in the algorithm’s configuration. Tools are provided to print out

the history of any parameter.

4.5 Logging

The logging service is used by application and middleware code to record status, diagnostic,

and debugging information about their execution.

4.5.1 Key Requirements

Log messages must be associated with component names organized hierarchically. Logging

levels controlling which messages are produced must be configurable on a per-component

level. There must be a way for messages that are not produced to not add significant over-

head. Logs must be able to be written to local disk files as well as sent via the event sub-

system. Metadata about a component’s context, such as a description of the CCD being pro-

cessed, must be able to be attached to a log message.

4.5.2 Baseline Design

Log objects are created in a parent/child hierarchy and associated with dotted-path names;

each such Log and name has an importance threshold associated with it. Methods on the Log

object are used to record log messages. One such method uses the C++ varargs functionality

to avoid the overhead of formatting the message until it has been determined if the impor-

tance meets the threshold. Log messages can have additional key/value contextual metadata

associated with them through a per-thread diagnostic context.

The contents of this document are subject to configuration control by the LSST DM Technical Control Team.

13

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Middleware Design LDM-152 Latest Revision 2017-07-05

4.5.3 Implementation

The logging implementation in the log package is based on the Apache log4cxx package [17].

Use of an off-the-shelf package provides the required functionality, including relatively ad-

vanced features as thread-safety, with minimal support cost.

Wrappers were written to adapt the log4cxx classes to LSST needs, providing "syntactic sugar"

as well as providing an interface that can be reimplemented in case log4cxx becomes depre-

cated in the future. The C++ classes and methods were also wrapped with pybind11 to enable

compatible access from Python.

log4cxx provides for significant configurability of logs, including their destinations, message

formatting, and thresholds, both through code and through external configuration files in

either XML or Java property format. An adapter was written to enable log messages to be

sent via ActiveMQ events, but this is not currently being used, as log collection mechanisms

are adequate.

4.6 MultiNode API

The MultiNode API is used to isolate the applications code from the details of the underlying

communications mechanism used to coordinate execution on and transfer data among a

tightly-synchronized set of nodes.

4.6.1 Key Requirements

The MultiNode APImust support at least point-to-point communication, global collection and

aggregation of data from a parallel computation with distribution of the aggregate back to

parallel processes, and data exchange from processes to “neighboring” processes using a de-

fined geometry. It must be possible to send and receive objects, but transmission of complex

data structures involving pointers is not required.

4.6.2 Baseline Design

The MultiNode API will be an abstract interface used by applications code implemented us-

ing two technologies: a message broker such as RabbitMQ [13] and MPI [7]. The former

The contents of this document are subject to configuration control by the LSST DM Technical Control Team.

14

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Middleware Design LDM-152 Latest Revision 2017-07-05

will typically be selected for general-purpose, low-volume communication, particularly when

global publish/subscribe functionality is desired; the latter will be used for efficient, high-rate

communication. A SuperTask will call the MultiNode API with a specification of its desired

geometry in order to execute its algorithm in parallel. The algorithm will make explicit use of

the MultiNode API to send data to and receive data from other instances of the task, including

scatter/gather (or map/reduce) communication.

4.6.3 Prototype Implementation

A set of classes have been written that use a batch system and communications via mpi4py

[18] to provide a pool of nodes that can be used in map/reduce fashion. Tasks making use

of this package subclass the base classes provided by this package and call the API explicitly

to map Task and function execution across data distributed over the node pool. This API

is used by driver scripts that perform single frame processing, calibration frame processing,

coaddition, and multiband measurement.

4.7 MultiCore API

The MultiCore API is used to isolate the applications code from the details of the underlying

threading mechanism used to coordinate execution on muliple cores on one node.

Use of this API will be necessary to take advantage of current and future processors that

contain large numbers of cores but limited amounts of memory per core.

This API has not yet been designed. Given contemporary limitations of threading at the

Python level, it is anticipated that it will be implemented only at the C++ level and will likely

use an existing API such as OpenMP [9].

5 Workload/Workflow Management

The Workload and Workflow Management component provides management of the execu-

tion of science payloads ranging from a single pipeline to a series of “campaigns”, each con-

sisting of multiple pipelines. Its services are able to handle massively distributed computing,

executing jobs when their inputs become available and tracking their status and outputs.

The contents of this document are subject to configuration control by the LSST DM Technical Control Team.

15

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Middleware Design LDM-152 Latest Revision 2017-07-05

They ensure that the data needed for a job is accessible to it and that outputs (including log

files, if any) are preserved. They can allocate work across multiple computing environments,

in particular between NCSA and the Satellite Computing Facility at CC-IN2P3.

This component invokes SuperTasks (section 4.1) via Activators to sequence the execution of

dataflow graphs across one or more distributed computational environments, in particular

compute resources allocated via a batch computing service.

5.1 Batch Computing

Batch computing occurs on LSST dedicated computing platforms at NCSA and CC-IN2P3 and

potentially on other platforms. Resources other than local CPU and storage for computa-

tion, such as curation storage to hold final data products (the Data Backbone, section 2) and

network connectivity, are also needed to completely execute a pipeline and completely re-

alize the data handling scheme for input and output datasets; the Workload and Workflow

component utilizes these as well.

Computing resources are physical items which are not always fit for use. They have scheduled

and unscheduled downtimes and may have scheduled availability. The management of cam-

paigns requires the detection of unscheduled downtimes of resources, recovery of executing

pipelines affected by unscheduled downtimes, and arranging for the best use of available

resources.

One class of potential resources are opportunistic resources whichmay be very capacious but

may not guarantee that jobs run to completion. These resources may be needed in contin-

gency circumstances. The workload management system is capable of differentiating “kills”

from other failures so as to enable use of these resources.

5.2 Workflow Management

The Workflow Management service provides for orchestration and execution of pipelines. Its

basic functionality is as follows:

• Pre-job context:

– Supports pre-handling of any input pipeline data sets when in-job context for input

The contents of this document are subject to configuration control by the LSST DM Technical Control Team.

16

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Middleware Design LDM-152 Latest Revision 2017-07-05

data is not required.

– Pre-stages input data into a platform’s storage system, if available.

– Produces condensed versions of database tables into portable lightweight format

when required.

– Deals with platform-specific edge services.

– Handles identities and provides for local identity on the computing platforms.

– Provides credentials and end-point information for any needed LSST services.

• In-job context:

– Provides stage-in for any in-job pipeline input data sets.

– Provides any Butler configurations necessarily provided from in-job context.

– Invokes the pipeline and collects pipeline output status and other operational data.

– Provides stage-out for pipeline output data sets when stage-out requires job con-

text.

• Post-job context:

– Ingests any designated data into database tables.

– Arranges for any post-job stage out from cluster file systems.

– Arranges for detailed ingest into custodial data systems.

– Transmits job status to workload management.

The baseline design for theWorkflowManagement service uses a workflow tool such as Pega-

sus [11] together with HTCondor [6], custom Activators, and Data Backbone interface scripts.

5.3 Workload Management

Workload Management considers the ensemble of available compute resources and the en-

semble of campaigns to be executed and dispatches pipeline invocations to the Workload or-

chestration system based on resource availability and campaign priority. It considers pipeline

failures reported by the Workload orchestration system, distinguishing errors from comput-

ing resources and computational errors where possible, and arranges for incident reports

and retrying failed invocations when appropriate. It exposes the progress of each campaign

to operations staff and monitoring systems, providing appropriate logging and events.

The contents of this document are subject to configuration control by the LSST DM Technical Control Team.

17

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Middleware Design LDM-152 Latest Revision 2017-07-05

This service has not yet been prototyped.

6 Processing Control

Processing Control provides the highest-level services that manage the execution of scientific

payloads within the DMS. There are three main productions that occur on differing cadences:

• Prompt Processing (nightly/daily)

• Template and Calibration Products Production Execution (daily/weekly/annual)

• Data Release Production Execution (annual)

as well as an ad hoc OCS-Controlled Batch processing service.

The Production Execution services are primarily managing submissions of campaigns at ap-

propriate times and with appropriate configurations to the Workload and Workflow Manage-

ment component. Prompt Processing and OCS-Controlled Batch, however, involve custom

interaction and control code in order to work closely with the Observatory Control System

(OCS).

6.1 Prompt Processing

The Prompt Processing service retrieves pixel data from themain LSST camera, builds images,

and sends them to the Archive Center for processing by the Alert Production payload or the

Raw Calibration Validation payload.

The Prompt Processing service is composed of a Data Management Control System (DMCS),

a Foreman, and a set of Forwarders at the Base as well as a Foreman, a set of Distributors,

and computational worker nodes at NCSA. See Figure 3.

The Forwarders at the Base connect directly to the Camera Data System to obtain pixel data,

one raft’s worth of pixels per forwarder. Fewer forwarders could be used if failures exhaust

the available spares. Theymerge these pixels with headermetadata and transfer the resulting

The contents of this document are subject to configuration control by the LSST DM Technical Control Team.

18

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Middleware Design LDM-152 Latest Revision 2017-07-05

FIGURE 3: Image Ingest and Processing System

images to the NCSA Distributors. The current design uses bbFTP to perform the transfer. The

Data Butler clients on the worker nodes pull the received images from the Distributors.

The Foremen at the Base and NCSA track the status of their respective pools of Forwarders

and Distributors and reallocate rafts as needed. The NCSA Foreman arranges for the config-

ured science payload to be executed on the worker nodes and collects image quality feed-

back, transferring it to the Telemetry Gateway service at the base for reporting to the OCS.

The DMCS is responsible for interfacing with the OCS as a commandable SAL (OCS Software

Abstraction Layer) component as defined in LSE-209 and LSE-70. It accepts commands from

the OCS to configure, start, and stop prompt processing (as well as several other OCS-related

services) and communicates with the Base and NCSA Foremen to do so. Note that the service

operates in a data-driven mode; no explicit OCS commands are given to process each image.

This system has been prototyped extensively in the ctrl_iip package and is being used for

integration tests with other LSST subsystems.

The contents of this document are subject to configuration control by the LSST DM Technical Control Team.

19

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Middleware Design LDM-152 Latest Revision 2017-07-05

6.2 OCS-Controlled Batch

The OCS-Controlled Batch Service provides the ability for OCS scripts to initiate processing

at NCSA using data that is already in the Data Backbone with results returned to the Data

Backbone and accessible in the usual manner of the project’s data. One major use of this is

to execute a daily calibration update payload upon completion of the day’s calibration image

acquisitions.

The OCS-Controlled Batch service works more simply than the Prompt Processing service.

The DMCS accepts commands from the OCS that refer to a pre-existing library of available

pipelines (SuperTasks). It submits jobs to the Workflow management system at NCSA to exe-

cute these on data that resides within the Data Backbone. Job completion and status notifi-

cations are returned to the OCS.

This service has not yet been prototyped.

7 References

[1] Amazon Glacier – Cloud Archive, URL https://aws.amazon.com/glacier/

[2] Campaign Storage, URL http://campaignstorage.com/

[3] IBM Spectrum Scale, URL https://www.ibm.com/us-en/marketplace/

scale-out-file-and-object-storage

[4] Globus Transfer API Documentation, URL https://docs.globus.org/api/transfer/

[5] HPSS – High Performance Storage Systems, URL http://hpss-collaboration.org/

[6] HTCondor, URL https://research.cs.wisc.edu/htcondor/index.html

[7] MPI Documents, URL http://mpi-forum.org/docs/

[8] MariaDB – Enterprise Open Source Database & Data Warehouse, URL https://mariadb.

com/

[9] OpenMP, URL http://www.openmp.org/

The contents of this document are subject to configuration control by the LSST DM Technical Control Team.

20

https://aws.amazon.com/glacier/
http://campaignstorage.com/
https://www.ibm.com/us-en/marketplace/scale-out-file-and-object-storage
https://www.ibm.com/us-en/marketplace/scale-out-file-and-object-storage
https://docs.globus.org/api/transfer/
http://hpss-collaboration.org/
https://research.cs.wisc.edu/htcondor/index.html
http://mpi-forum.org/docs/
https://mariadb.com/
https://mariadb.com/
http://www.openmp.org/

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Middleware Design LDM-152 Latest Revision 2017-07-05

[10] Oracle – Database 12c, URL https://www.oracle.com/database/index.html

[11] Pegasus WMS, URL https://pegasus.isi.edu/

[12] Quobyte – Data Center File System, URL https://www.quobyte.com/

[13] RabbitMQ –Messaging that just works, URL https://www.rabbitmq.com/

[14] Rucio Distributed Data Management Documentation, URL http://rucio.cern.ch/

[15] Microsoft – SQL Server 2016, URL https://www.microsoft.com/en-us/sql-server/

sql-server-2016

[16] The Official YAML Web Site, URL http://yaml.org/

[17] Apache log4cxx, URL https://logging.apache.org/log4cxx/latest_stable/

[18] MPI for Python, URL http://mpi4py.readthedocs.io/en/stable/

[19] [LDM-135], Becla, J., Wang, D., Monkewitz, S., et al., 2013, Database Design, LDM-135,
URL https://ls.st/LDM-135

[20] [LDM-556], Dubois-Felsmann, G., 2017, Data Management Middleware Requirements,
LDM-556, URL https://ls.st/LDM-556

[21] [LSE-209], Lotz, P., 2016, Software Component to OCS Interface, LSE-209, URL https://ls.
st/LSE-209

[22] [LSE-70], Lotz, P., 2016, System Communication Protocol Interface, LSE-70, URL https:

//ls.st/LSE-70

The contents of this document are subject to configuration control by the LSST DM Technical Control Team.

21

https://www.oracle.com/database/index.html
https://pegasus.isi.edu/
https://www.quobyte.com/
https://www.rabbitmq.com/
http://rucio.cern.ch/
https://www.microsoft.com/en-us/sql-server/sql-server-2016
https://www.microsoft.com/en-us/sql-server/sql-server-2016
http://yaml.org/
https://logging.apache.org/log4cxx/latest_stable/
http://mpi4py.readthedocs.io/en/stable/
https://ls.st/LDM-135
https://ls.st/LDM-556
https://ls.st/LSE-209
https://ls.st/LSE-209
https://ls.st/LSE-70
https://ls.st/LSE-70

	Introduction
	Data Backbone
	Replication and Transport
	Location and Metadata
	Files
	Databases

	Data Butler Access Client
	Key Requirements
	Baseline Design
	Alternatives Considered
	Implementation

	Task Framework
	SuperTask
	Activators
	Task
	Configuration
	Key Requirements
	Baseline Design
	Implementation

	Logging
	Key Requirements
	Baseline Design
	Implementation

	MultiNode API
	Key Requirements
	Baseline Design
	Prototype Implementation

	MultiCore API

	Workload/Workflow Management
	Batch Computing
	Workflow Management
	Workload Management

	Processing Control
	Prompt Processing
	OCS-Controlled Batch

	References

