
Large Synoptic Survey Telescope (LSST)Data Management
Data Management MiddlewareDesign
K.-T. Lim, G. Dubois-Felsmann, M. Johnson, M. Juric, andD. Petravick

LDM-152
Latest Revision: 2019-07-18

This LSST document has been approved as a Content-Controlled Document by the LSST DM
Change Control Board. If this document is changed or superseded, the new document will re-
tain the Handle designation shown above. The control is on the most recent digital document
with this Handle in the LSST digital archive and not printed versions. Additional information
may be found in the corresponding DM RFC.

LARGE SYNOPTIC SURVEY TELESCOPE

LARGE SYNOPTIC SURVEY TELESCOPE Data Management Middleware Design LDM-152 Latest Revision 2019-07-18

Abstract
The LSST middleware is designed to isolate scientific application pipelines and pay-

loads, including the Alert Production, Data Release Production, Calibration Products

Productions, and science user pipelines executed within the LSST Science Platform,

from details of the underlying hardware and system software. It enables flexible

reuse of the same code in multiple environments ranging from offline laptops to

shared-memory multiprocessors to grid-accessed clusters, with a common I/O and

logging model. It ensures that key scientific and deployment parameters controlling

execution can be easily modified without changing code but also with full prove-

nance to understand what environment and parameters were used to produce any

dataset. It provides flexible, high-performance, low-overhead persistence and re-

trieval of datasets with data repositories and formats selected by external parame-

ters rather than hard-coding.

The contents of this document are subject to configuration control by the LSST DM Change Control Board.
ii

LARGE SYNOPTIC SURVEY TELESCOPE Data Management Middleware Design LDM-152 Latest Revision 2019-07-18

Change Record
Version Date Description Owner name
1.0 2011-07-25 Initial version based on pre-existing UML

models and presentations

Kian-Tat Lim

2.0 2013-05-22 Updated based on experience from proto-

types and Data Challenges.

Kian-Tat Lim

8 2013-10-04 Updated based on comments from Process

Control Review, changed to current terminol-

ogy

Kian-Tat Lim

9 2013-10-09 Further updates based on Process Control Re-

view, formatting cleanup.

Kian-Tat Lim

10 2013-10-10 TCT R Allsman

11.0 2017-07-05 Rewritten for Construction and Operations.

Approved in RFC-358.

K-T Lim

12.0 2019-07-18 Removed Data Backbone and Batch Produc-

tion Services to other documents. Approved

in RFC-613.

K-T Lim

Document curator: Kian-Tat Lim
Document source location: https://github.com/lsst/LDM-152

The contents of this document are subject to configuration control by the LSST DM Change Control Board.
iii

https://jira.lsstcorp.org/browse/RFC-358
https://jira.lsstcorp.org/browse/RFC-613
https://github.com/lsst/LDM-152

LARGE SYNOPTIC SURVEY TELESCOPE Data Management Middleware Design LDM-152 Latest Revision 2019-07-18

Contents
1 Introduction 1
2 Data Butler Access Client 1
2.1 Key Requirements . 3

2.2 Baseline Design . 3

2.3 Alternatives Considered . 5

2.4 Implementation . 5

3 Task Framework 5
3.1 PipelineTask . 6

3.2 Activators . 7

3.3 Task . 8

3.4 Configuration . 8

3.4.1 Key Requirements . 9

3.4.2 Baseline Design . 9

3.4.3 Implementation . 10

3.5 Logging . 10

3.5.1 Key Requirements . 10

3.5.2 Baseline Design . 10

3.5.3 Implementation . 11

3.6 MultiNode API . 11

3.6.1 Key Requirements . 11

3.6.2 Baseline Design . 11

3.6.3 Prototype Implementation . 12

3.7 MultiCore API . 12

4 References 12

The contents of this document are subject to configuration control by the LSST DM Change Control Board.
iv

LARGE SYNOPTIC SURVEY TELESCOPE Data Management Middleware Design LDM-152 Latest Revision 2019-07-18

Data Management Middleware Design
1 Introduction
This document describes the baseline design of the LSST data access and processing middle-

ware, including the following components:

• Data Butler Access Client

• Task Framework

The Data Butler Access Client provides a flexible interface for retrieving and persisting the

LSST data products. The Task Framework defines how scientific algorithms are packaged into

pipelines, including how they are configured, how they use the Data Butler to access data,

and how they execute on multiple nodes or cores.

Common to all aspects of the middleware design is an emphasis on flexibility through the

use of abstract, pluggable interfaces controlled by managed, user-modifiable parameters.

In addition, the substantial computational and bandwidth requirements of the LSST Data

Management System (DMS) force the designs to be conscious of performance, scalability,

and fault tolerance.

Requirements for the DMS Middleware are defined in LDM-556.

Figure 1 illustrates how various parts of the middleware interact with each other.

2 Data Butler Access Client
This component is the framework by which applications retrieve datasets from and persist

datasets to file and database storage. It provides a flexible way of identifying datasets, a plug-

gable mechanism for discovering and locating them, and a separate pluggable mechanism

for reading and writing them.

The contents of this document are subject to configuration control by the LSST DM Change Control Board.
1

LARGE SYNOPTIC SURVEY TELESCOPE Data Management Middleware Design LDM-152 Latest Revision 2019-07-18

Task Framework

Config API Logging API MultiNodeTask
API

MultiCoreTask
API

Control and
Orchestration

Authentication
& Authorization

Provisioning &
Resource

Management
Monitoring Science Algorithms

PipelineTask

Task

Command Line
Activator SUIT Activator

Pre-Flight and
Job-Level
Activators

D
at

a
B

ac
kb

on
e

RDBMS

Files

Da
ta

 B
ut

le
r

Qserv

FIGURE 1: Data Management Middleware and Infrastructure

The contents of this document are subject to configuration control by the LSST DM Change Control Board.
2

LARGE SYNOPTIC SURVEY TELESCOPE Data Management Middleware Design LDM-152 Latest Revision 2019-07-18

2.1 Key Requirements
The framework must provide persistence and retrieval capabilities to application code. Per-

sistence is the mechanism by which application objects are written to files in some format or

a database or a combination of both; retrieval is the mechanism by which data in files or a

database or a combination of both is made available to application code in the form of an

application object. Persistence and retrieval must be low-overhead, allowing efficient use of

available bandwidth. The interface to the I/O layer must be usable by application developers.

It is required to be flexible, allowing changes in file formats or even whether a given object

is stored in a file or the database to be selected at runtime in a controlled manner. It must

be possible to store image pixel data in a file while part or all of its metadata is stored in a

different file or in a database table.

2.2 Baseline Design
The framework is designed to provide access to datasets. A dataset is a logical grouping of

data that is persisted or retrieved as a unit, typically corresponding to a single programming

object or a collection of objects. Datasets are identified by a set of key/value pairs along with a

label for the type of data (e.g. processed visit image). Datasets may be persisted into multiple

formats.

The framework is made up of two main components: a “Mapper” that manages camera-

specific repositories of datasets and determines the logical location of an identified dataset

and a “Butler” that performs persistence and retrieval for that dataset. In the baseline design,

the Butler wraps the Mapper and provides the exposed interface; it is anticipated that future

evolution will increasingly separate these two. Both components are implemented in Python.

The Butler and its included Mapper manage repositories of datasets which can be in files or

in a database. Operations on datasets include get, put, list, and check for existence.

The Butler contains a pluggable set of serializers that handle persistence to and retrieval

from serialization formats such as Python pickle files, task configuration override files (Python

scripts), and FITS tables; separate plugins handle different types of storage such as filesys-

tems, object stores, or SQL databases.

The contents of this document are subject to configuration control by the LSST DM Change Control Board.
3

LARGE SYNOPTIC SURVEY TELESCOPE Data Management Middleware Design LDM-152 Latest Revision 2019-07-18

The Butler is initialized with zero or more read-only input repositories and one or more read-

/write output repositories. When reading a dataset, the output repository is searched first;

the “chained” input repositories are searched if the dataset is not found. When writing a

dataset, the dataset always goes to the output repository, never to the chained inputs (un-

less the output is specified as being the same as an input). The set of input repositories is

recorded for provenance purposes and for future uses of the output repository.

TheMapper translates from a dataset type name and one or more astronomically meaningful

key/value dictionaries into a dataset location and storage. The location might be a pathname

or URL for a file; it would include an SQL query for a database.

The Mapper provides flexibility at many levels. First, it allows the provided key/value dictio-

naries to be expanded using rules or database lookups. This can be used to map from a visit

identifier to an exposure length, for example, or from a CCD name to an equivalent num-

ber. This facility is used to implement the “rendezvous” of raw data with its corresponding

calibration data. Second, it allows the key/value pairs to be turned into a location string us-

ing a dataset type-dependent method. Typically, this will be performed by substitution into

a dataset type-specific template. Third, the Mapper allows camera-specific and repository-

specific overrides and extensions to the list of rules and templates, enabling per-camera and

dynamic dataset type creation.

For LSST, the Mapper flexibility is used in several ways. For precursor data, image files can

retain the names they were assigned in the upstream archive, with templates being used to

compute the filename from the values in the dictionary. Metadata stored in a SQLite database

within the repository allows more rapid listing of available datasets and expansion of partial

key/value dictionaries. Calibration data is associated with images by observation timestamp

using validity ranges stored in an auxiliary SQLite database. For LSST Data Release Produc-

tion, the same mechanisms will be used to process data staged from the Data Backbone

(DBB). Direct access by the Data Butler to the Data Backbone (e.g. from the LSST Science Plat-

form) will use DBB metadata tables directly. The Mapper will produce logical file identifiers

that the DBB converts to endpoint-local physical locations. For LSST Alert Production, the

Mapper will be configured to point to raft images on the distributor nodes and locally-cached

calibration and template images.

The contents of this document are subject to configuration control by the LSST DM Change Control Board.
4

LARGE SYNOPTIC SURVEY TELESCOPE Data Management Middleware Design LDM-152 Latest Revision 2019-07-18

2.3 Alternatives Considered
Use of a full-fledged object-relational mapping system for output to a database was consid-

ered but determined to be too heavyweight and intrusive. Persistence from C++ was tried

and found to be complex and unnecessary; Python persistence suffices since all control is in

Python.

2.4 Implementation
A Python implementation of the design has been in place since DC3 prior to Final Design

Review. This implementation has evolved substantially since then to simplify the pluggability

of serialization and storage, to simplify the configuration of common Mapper subclasses,

to allow and maintain more repository configuration information within the repository, to

support multiple input and output repositories, to provide a configurable (rather than hard-

coded) mechanism for retrieving and persisting composite datasets that aremade up ofmore

than one serialized dataset, to replace a custom configuration file format with standard YAML

[7], and to provide support for caching persisted and retrieved objects in memory.

Since low-level serialization code is implemented in C++ or external libraries, I/O performance

remains good.

3 Task Framework
The Task Framework enables the packaging of scientific algorithms into executable and reusable

pipelines. It handles configuration, argument parsing, and interfacing with the I/O and inter-

process communications mechanisms.

The Task Framework is a Python class library that provides a structure of standardized class

entry points and conventions to organize low-level algorithms into potentially-reusable algo-

rithmic components called Tasks. Sample Tasks might include dark frame subtraction, ob-

ject detection, or object measurement. The Framework organizes tasks into basic pipelines

called PipelineTasks. Sample PipelineTasks might include processing a single visit, building

a coadd, or differencing a visit. The algorithmic code is written into (Pipeline)Tasks by over-

riding classes and providing implementation for standard entry points. The Task Framework

The contents of this document are subject to configuration control by the LSST DM Change Control Board.
5

LARGE SYNOPTIC SURVEY TELESCOPE Data Management Middleware Design LDM-152 Latest Revision 2019-07-18

allows the pipelines to be constructed and run at the level of a single node or a group of

tightly-synchronized nodes. It allows for sub-node parallelization: trivial parallelization of

Task execution, as well as providing parallelization primitives for development of multi-core

Tasks and synchronized multi-node Tasks.

The Task Framework serves as an interface layer between orchestration and the algorithmic

code. It exposes a standard interface to Activators (command-line runners as well as the

workflow component and automated QC systems), which use it to execute the code wrapped

in Tasks. The Task Framework does not concern itself with fault-tolerant massively parallel

execution of the pipelines over multiple (thousands) of nodes nor any staging of data that

might be required; this is the concern of the orchestration and workflow middleware.

The Task Framework exposes to the workflow system the needs and capabilities of the un-

derlying algorithmic code (i.e., the number of cores needed, expected memory-per-core, ex-

pected need for data). It may also receive from the orchestration layer information on how

to optimally run the particular task (i.e., which level of intra-node parallelization is desired).

3.1 PipelineTask
A PipelineTask represents a unit of (generally transformational) work to be performed on

data. Its primary responsibility is to provide the interface between Activators and Tasks. In do-

ing so, it separates input and output from computation, making Tasks more reusable and en-

abling data movement and other optimizations within a distributed execution environment.

The PipelineTask also exposes the kinds of data that it accepts and generates. For example,

a coaddition PipelineTask might operate on a set of processed visit images and produce a

patch of a coadded image. The specific data items to be processed are supplied through the

Activator-PipelineTask interface. The goal of the design is that any PipelineTask can be run in

any computational environment, from a laptop command line to the large-scale Data Release

Production.

In general a PipelineTask receives the content of its inputs and produces its outputs by invok-

ing the Data Butler.

The PipelineTask base class is a subclass of Task. This is so that PipelineTask can take advan-

tage of the configurationmechanism for Tasks. The hierarchy of Tasks in a specific application

therefore extends all the way up to the top-level PipelineTask, and each level is addressable

The contents of this document are subject to configuration control by the LSST DM Change Control Board.
6

LARGE SYNOPTIC SURVEY TELESCOPE Data Management Middleware Design LDM-152 Latest Revision 2019-07-18

for configuration discovery and overrides.

Each PipelineTask implements a method that groups the input datasets into "quanta" that are

the minimal units of work for an instance of the PipelineTask and notifies the Activator of the

outputs to be produced from each such unit of work. It also implements a method to execute

a computation on a single quantum of data, typically by retrieving the inputs from the Data

Butler and executing the underlying Task, followed by persisting the outputs, again using the

Data Butler.

Datasets, as with the Data Butler, are specified by a set of key/value pairs, typically obtained

by performing a database query on metadata tables, along with a label for the type of data

(e.g. processed visit image).

PipelineTasks also expose their processing requirements to their Activators, such as a need

for multi-node communication or multi-core execution.

PipelineTask implementation is in the prototype stage. The previous design and implemen-

tation combined the Activator and PipelineTask functionality into a single class (CmdLineTask)

that is now being replaced.

3.2 Activators
The Activator is responsible for providing a Butler instance for the PipelineTask’s use. It is also

responsible for instantiating the PipelineTask to be run and for providing necessary inputs

to the configuration parameter mechanism (see section 3.4) for the PipelineTask. For exam-

ple, the “command line Activator” identifies the PipelineTask to be run by name, locates and

instantiates it, and provides for command-line overrides of config parameters of the Pipeline-

Task. It also creates a Butler based on one or more provided or defaulted data repositories.

An Activator is responsible for arranging for the execution of a PipelineTask’s executionmethod

one or more times over a set of dataset specifiers. Via collaboration with the PipelineTask in-

terfaces, the Activator is able to determine the parallelization and scatter-gather behavior

that is permissible and/or required to implement the workflow defined by the PipelineTask.

The Activator therefore controls the input/output data access environment as well as the

computational environment of the PipelineTask. It is the plugin that enables PipelineTask

The contents of this document are subject to configuration control by the LSST DM Change Control Board.
7

LARGE SYNOPTIC SURVEY TELESCOPE Data Management Middleware Design LDM-152 Latest Revision 2019-07-18

portability and reuse.

Specific Activators that are part of the design include a command line Activator and a work-

flow Activator that can be used to determine the data needed and produced by a PipelineTask

before its execution in order to configure data staging capabilities.

Activator implementation is in the prototype stage.

3.3 Task
Tasks are simply Python scripts with a common base class. Using Python enables Tasks to

support complex control flows without developing a new control flow language. Tasks may

hierarchically call sub-Tasks as part of their execution. Errors are reported through standard

Python exception subclasses.

Tasks provide by default three facilities commonly used by all algorithmic code: configuration,

metadata, and logging. The Task base class provides configuration facilities using the config-

uration framework. The Task configuration can include selection of sub-Tasks to be executed,

allowing the pipeline to be reconfigured at runtime. The Task class allows Tasks to save meta-

data related to their processing, such as performance or data quality information, separate

from their data products. Each Task provides a default logger instance associated with the

Task’s name and position within the Task/sub-Task hierarchy.

The basic Task implementation is complete and resides in the pipe_base package.

3.4 Configuration
The configuration component of the Pipeline Framework is a mechanism to specify parame-

ters for applications and middleware in a consistent, managed way. The use of this compo-

nent facilitates runtime reconfiguration of the entire system while still ensuring consistency

and the maintenance of traceable provenance.

The contents of this document are subject to configuration control by the LSST DM Change Control Board.
8

LARGE SYNOPTIC SURVEY TELESCOPE Data Management Middleware Design LDM-152 Latest Revision 2019-07-18

3.4.1 Key Requirements
Configurations must be able to contain parameters of various types, including at least strings,

booleans, integers, and floating-point numbers. Ordered lists of each of these must also

be supported. Each parameter must have a name. A hierarchical organization of names

is required so that all parameters associated with a given component may be named and

accessed as a group.

There must be a facility to specify legal and required parameters and their types and to use

this information to ensure that invalid parameters are detected before code attempts to use

them. Default values for parameters must be able to be specified; it must also be possible to

override those default values, potentially multiple times (with the last override controlling).

Configurations and their parameters must be stored in a user-modifiable form. It is prefer-

able for this form to be textual so that it is human-readable and modifiable using an ordinary

text editor.

It must be possible to save sufficient information about a configuration to obtain the value of

any of its parameters as seen by the application code.

3.4.2 Baseline Design
The initial design based on a custom text file format has been refined based on experimen-

tation during the design and development phase.

Configurations are instances of a Python class. The class definition specifies the legal param-

eter names, their types, default values if any, minimum and maximum lengths for list values,

and whether a parameter is required. It also mandates that a documentation string be pro-

vided for each parameter. Use of Python for defining configurations enables inheritance, the

use of package imports to easily refer to configurations from other components, complex

parameter validation, and the ability to define powerful new parameter types. Default values

in configuration instances can be overridden by human-readable text files containing normal

Python code, simplifying the specification of multiple similar parameters. Overrides can also

be set using command line parameters. The Python base class maintains complete history

information for every parameter, including its default and all overrides. The state of a con-

figuration as used by the application code can be written out and optionally ingested into a

The contents of this document are subject to configuration control by the LSST DM Change Control Board.
9

LARGE SYNOPTIC SURVEY TELESCOPE Data Management Middleware Design LDM-152 Latest Revision 2019-07-18

database for provenance purposes .A mechanism is provided to automatically translate be-

tween the Python configuration instance and a control object for C++ code.

3.4.3 Implementation
An implementation of the Python-based design in the pex_config package has been used

since December 2011. It contains features such as selection of an algorithm by name from a

registry, automatically pulling in the algorithm’s configuration. Tools are provided to print out

the history of any parameter.

3.5 Logging
The logging service is used by application and middleware code to record status, diagnostic,

and debugging information about their execution.

3.5.1 Key Requirements
Log messages must be associated with component names organized hierarchically. Logging

levels controlling which messages are produced must be configurable on a per-component

level. There must be a way for messages that are not produced to not add significant over-

head. Logs must be able to be written to local disk files to be gathered by a collection system.

Metadata about a component’s context, such as a description of the CCD being processed,

must be able to be attached to a log message.

3.5.2 Baseline Design
Log objects are created in a parent/child hierarchy and associated with dotted-path names;

each such Log and name has an importance threshold associated with it. Methods on the Log

object are used to record log messages. One such method uses the C++ varargs functionality

to avoid the overhead of formatting the message until it has been determined if the impor-

tance meets the threshold. Log messages can have additional key/value contextual metadata

associated with them through a per-thread diagnostic context.

The contents of this document are subject to configuration control by the LSST DM Change Control Board.
10

LARGE SYNOPTIC SURVEY TELESCOPE Data Management Middleware Design LDM-152 Latest Revision 2019-07-18

3.5.3 Implementation
The logging implementation in the log package is based on the Apache log4cxx package [5].

Use of an off-the-shelf package provides the required functionality, including relatively ad-

vanced features as thread-safety, with minimal support cost.

Wrappers were written to adapt the log4cxx classes to LSST needs, providing "syntactic sugar"

as well as providing an interface that can be reimplemented in case log4cxx becomes depre-

cated in the future. The C++ classes and methods were also wrapped with pybind11 to enable

compatible access from Python.

log4cxx provides for significant configurability of logs, including their destinations, message

formatting, and thresholds, both through code and through external configuration files in

either XML or Java property format.

3.6 MultiNode API
The MultiNode API is used to isolate the applications code from the details of the underlying

communications mechanism used to coordinate execution on and transfer data among a

tightly-synchronized set of nodes.

3.6.1 Key Requirements
The MultiNode API must support at least point-to-point communication, global collection and

aggregation of data from a parallel computation with distribution of the aggregate back to

parallel processes, and data exchange from processes to “neighboring” processes using a de-

fined geometry. It must be possible to send and receive objects, but transmission of complex

data structures involving pointers is not required.

3.6.2 Baseline Design
The MultiNode API will be an abstract interface used by applications code implemented using

two technologies: a message broker such as RabbitMQ [6] and MPI [2]. The former will typ-

ically be selected for general-purpose, low-volume communication, particularly when global

publish/subscribe functionality is desired; the latter will be used for efficient, high-rate com-

The contents of this document are subject to configuration control by the LSST DM Change Control Board.
11

LARGE SYNOPTIC SURVEY TELESCOPE Data Management Middleware Design LDM-152 Latest Revision 2019-07-18

munication. A PipelineTask will call the MultiNode API with a specification of its desired ge-

ometry in order to execute its algorithm in parallel. The algorithm will make explicit use of the

MultiNode API to send data to and receive data from other instances of the task, including

scatter/gather (or map/reduce) communication.

3.6.3 Prototype Implementation
A set of classes have been written that use a batch system and communications via mpi4py [3]

to provide a pool of nodes that can be used in map/reduce fashion. Tasks making use of this

package subclass the base classes provided by this package and call the API explicitly to map

Task and function execution across data distributed over the node pool. This API is used by

driver scripts that perform single frame processing, calibration frame processing, coaddition,

and multiband measurement.

3.7 MultiCore API
The MultiCore API is used to isolate the applications code from the details of the underlying

threading mechanism used to coordinate execution on muliple cores on one node.

Use of this API will be necessary to take advantage of current and future processors that

contain large numbers of cores but limited amounts of memory per core.

This API has not yet been designed. Given contemporary limitations of threading at the

Python level, it is anticipated that it will be implemented only at the C++ level and will likely

use an existing API such as OpenMP [4].

4 References

[1] [LDM-556], Dubois-Felsmann, G., Jenness, T., Bosch, J., et al., 2018, Data Management
Middleware Requirements, LDM-556, URL https://ls.st/LDM-556

[2] MPI, MPI Documents, URL http://mpi-forum.org/docs/

The contents of this document are subject to configuration control by the LSST DM Change Control Board.
12

https://ls.st/LDM-556
http://mpi-forum.org/docs/

LARGE SYNOPTIC SURVEY TELESCOPE Data Management Middleware Design LDM-152 Latest Revision 2019-07-18

[3] MPI4PY, MPI for Python, URL http://mpi4py.readthedocs.io/en/stable/

[4] OpenMP, OpenMP, URL http://www.openmp.org/

[5] Project, A.L.S., Apache log4cxx, URL https://logging.apache.org/log4cxx/latest_stable/

[6] RabbitMQ, RabbitMQ – Messaging that just works, URL https://www.rabbitmq.com/

[7] YAML, The Official YAML Web Site, URL http://yaml.org/

The contents of this document are subject to configuration control by the LSST DM Change Control Board.
13

http://mpi4py.readthedocs.io/en/stable/
http://www.openmp.org/
https://logging.apache.org/log4cxx/latest_stable/
https://www.rabbitmq.com/
http://yaml.org/

	Introduction
	Data Butler Access Client
	Key Requirements
	Baseline Design
	Alternatives Considered
	Implementation

	Task Framework
	PipelineTask
	Activators
	Task
	Configuration
	Key Requirements
	Baseline Design
	Implementation

	Logging
	Key Requirements
	Baseline Design
	Implementation

	MultiNode API
	Key Requirements
	Baseline Design
	Prototype Implementation

	MultiCore API

	References

